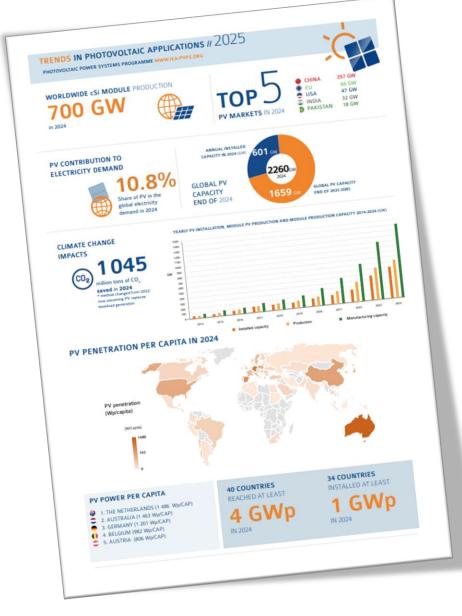


Solar World Congress 2025 04 - 07 November in Fortaleza, Brazil

Solar Energy Integration

For Sustainable Cities

Professor Rebecca Yang


Department of Infrastructure Engineering, School of Electrical, Mechanical and Information Engineering

Faculty of Engineering and Information Technology, University of Melbourne

TRENDS IN PV APPLICATIONS - 2025

Worldwide Highlights

- Over 2.26 TW of PV plants have been installed globally
- Over 47% has been installed in the past three years.

PV in Global Electricity Mix

- PV supplied 10.8% of global electricity in 2024
- Global PV capacity:
 - End of 2024 → 2,260 GW
 - End of 2023 → 1,659 GW
 - Newly installed (2024): 601 GW
- 40 countries reached ≥ 4 GWp installed in 2024
- 34 countries reached ≥ 1 GWp

PV'S EXPANDING FOOTPRINT

- ☐ Environmental & EconomicImpact
- Industrial & TechnologicalDevelopment
- ☐ Systemic & Social Value

Climate change mitigation

avoid up to 1 045 million tonnes of CO2 eq annually

Manufacturing shifts

overcapacity in 2023

→ price stabilization
late 2024

Value for the economy

turnover PV sector minimum of 430 billion USD

Module innovation

70% n-type wafers; bifacial modules = 75% of production

Employment

~9.1 million jobs (installation & O&M dominant)

Challenges

Grid curtailment rising

→ need for storage &
flexibility

System value

PV+ projects and industrial decarbonization emerging

Social inclusion

First Nations partnership models in Australia, Canada, USA

HIGHLIGHTS IN TECHNOLOGICAL AND MARKET TRENDS OF PV

Module efficiencies

continue to improve, with n-type technologies now representing 70% of global production.

Bifacial modules

dominate the market, making up over 75% of production.

Utility-scale systems

represent 62% of new installations, while distributed and prosumer markets continue to grow through self-consumption and innovative business models.

Dual-use applications

such as agrivoltaics, floating PV, and infrastructure/building-integrated PV are becoming increasingly relevant, helping balance land use, food production, and renewable energy generation.

AUSTRALIA – A SOLAR NATION

Global rank

#2 in PV per capita -1,463 W/capita

Market type

- ~66% 26.4GW distributed,
- ~ 33%13.4GW centralised -Among top 10 countries

Trends

- · Battery + solar hybrid uptake rising
- · Dual-use PV pilots expanding
- Community energy & virtual networks developing

Cumulative capacity

≈ 39.8 GW (> 10× 2015 levels)

2024 additions

Socio-economic

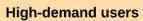
Growing regional and First Nations partnership models

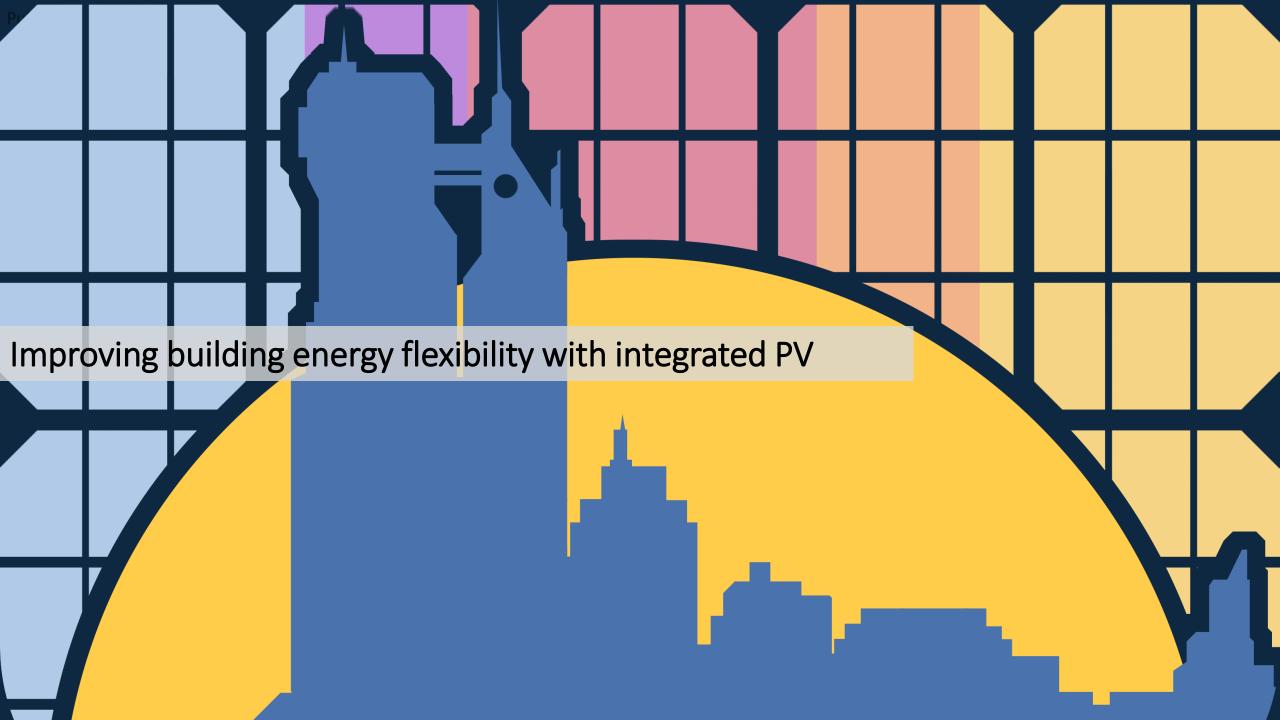
~4 GW new PV (+ steady growth)

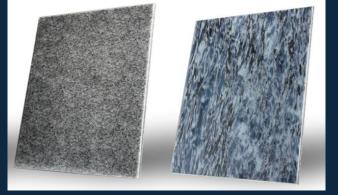
Energy flexibility Virtual Power Plant

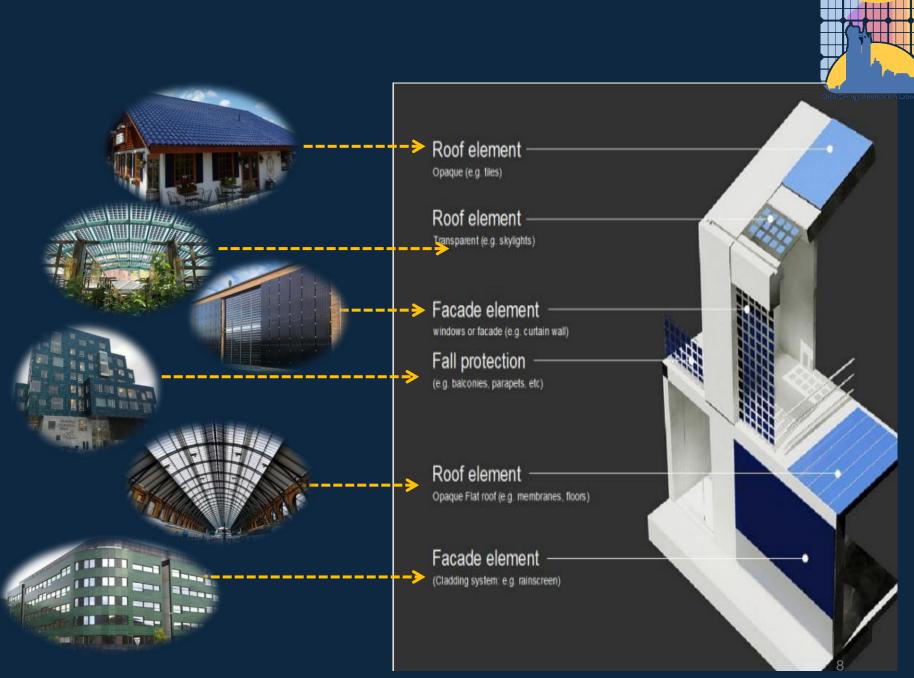
Community energy infrastructure Virtual Power Plant

PV penetrated community






Grid infrastructure



IEA PVPS Task 15: about 10 years of collaborative research

Enabling Framework for the Development of BIPV

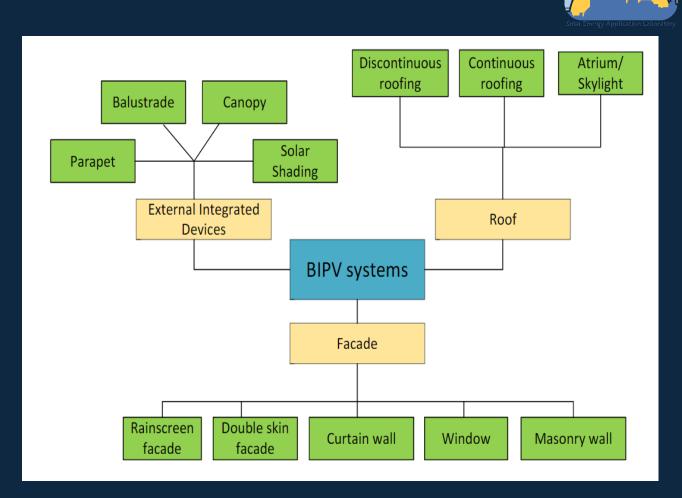
Objective:

- Create an enabling framework to accelerate the penetration of BIPV products in the global market of renewables.
- Resulting in an equal playing field for BIPV products, BAPV products and regular building envelope components.
- Respecting multifunctional aspects, mandatory issues, regulatory issues, aesthetic issues, reliability and financial issues.

Task 15 jouney so far

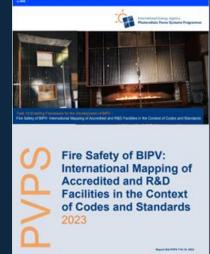
Task 15: 2016-2019

- BIPV project database
- Transition towards Sound BIPV Business Models
- International framework of BIPV specifications
- Environmental Benefits of BIPV


Task 15: 2020-2023

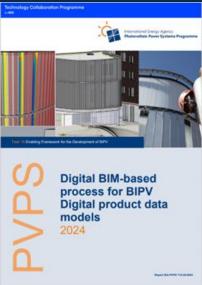
- TIS Analysis of BIPV
- Cross-sectional analysis
- BIPV Guidelines
- Digitalization for BIPV
- Pre-normative international research on BIPV

Task 15: 2024-2027


- BIPV market and in circular economy
- Pre-Standardization
- Digital environment
- Product, demo and long-term behavior

Category A:	Sloping, roof-integrated, not accessible from within the building The BIPV modules are installed at a tilt angle between 0° and 75° from the horizontal plane [0°, 75°), with another building product installed underneath.	
Category B:	Sloping, roof-integrated, accessible from within	
	the building	
	The BIPV modules are installed at a tilt angle between 0° and 75° from the horizontal plane [0°, 75°).	
Category C:	Non-sloping (vertically) envelope-integrated, not accessible from within the building	
	The BIPV modules are installed at a tilt angle between 75° and 90° from the horizontal plane [75°,90°], with another building product installed behind.	
Category D:	Non-sloping (vertically), envelope-integrated, accessible from within the building	
	The BIPV modules are installed at a tilt angle between 75° and 90° from the horizontal plane [75°, 90°].	
Category E:	Externally integrated, accessible or not accessible from within the building	
	The BIPV modules are installed to form an additional functional layer that provides a building requirement E.g. balcony balustrades, shutters, awnings, louvers, brise soleil etc.	

Bonomo, P., ...Yang, R. et. al. Categorization of BIPV applications. Task 15 Enabling Framework for BIPV acceleration. Report **IEA-PVPS** T15-12:2021



X Same

Solar irradiation

Stakeholders: Facade engineers, Architects, Electrical engineers, BIPV system installers, PV consultants, ESD consultants, Academics

Stakeholders	: Façade engi	neers, Architects, Ele
Deve	loping build	ing model
Identifying project	_	lding geometry and ing environment
Google maps	2D • CAD	3D • CAD or BIM
IP addresse s	software	software GIS modelling CAD or BIM
 Manually selected from a list 		software with LiDAR assisted point cloud data
Photorealistic	visualisation	Data exchange formats
Sketch Rhino		Autodesk Revit.rut Open BIM
3D stud Lumior	dio max	(ISO).ifc SketchUp.skp
plugin 1	for SketchUp	Mandala Kanabilahan

Solar irradiation analysis Weather parameters Model for POA Methods for estimation shading Irradiance approximations Beam/direct normal POA (Beam only) POA with shading and Ray tracing Diffuse horizontal irradiance ground reflected Shading Global horizontal irradiance (Albedo) percentage Temperature POA sky diffused Far field shading Wind speed Ray tracing with horizon map radiosity Ray tracing Near field shading with rasterization factor Sky view factor Type of weather data POA sky diffuse model Reduction of incident irradiation Isotropic Sky Diffuse Long-term averaged data Shading index Ground mounted meteorological data Model Satellite based meteorological data Simple Sandia Sky Measured at site Diffuse Model Software for Hav and Davies Sky Hybrid Diffuse Model estimating POA Reindl Sky Diffuse Weather file Weather data irradiation step values formats BIMSolar, IES VE, Perez Sky Diffuse PVsyst, TAS, Revit EPW files from Model Conceptual the EnergyPlus. Solar, PV Watt, design -Typical Annual Pleiades, Helioscope, Meteorological Detailed Year PV GIS, Radiance and design -SAM Hourly

Step 2

Power output analysis

Stakeholders: Electrical engineers, Architects, Façade engineers, PV consultants, and Property managers

Importing properties of technical components of

MicroStation a

KeyShot

BIPV component database in software

- Online platform
- Add manually

Models for higher

spatial

resolutions

Custom made

tools

Models for calculating DC output of BIPV

- PV cell temperature model
- Power model by Heydenreich et al. (2008)
- Sandia PV Array Performance Model (SAPM)
- Loss factors model (LFM)
- Single diode model

- Two-diode model

Software for calculating DC output of BIPV

- PVsvst
- PV*Sol
- SAM
- Retscreen

Yang et al., 2022, BIPV Digitalization: Design Workflows and Methods – A global survey, IEA PVPS, https://iea-pvps.org/researchtasks/enabling-framework-for-the-developmentof-bipv/

Building performance

Stakeholders: Architects, Electrical engineers, Mechanical/Structural Engineers, Fire engineers, Façade engineers, PV consultants, ESD consultants, Property managers and Academics

Building energy consumption

Models for identifying the energy consumption

- Calculating the watt hour
- Use historical information electricity bills

Step 3

- Simulation software to identify building energy demand (e.g. IES VE, EnergyPlus)
- Measure building energy consumption
- Percentage of monthly on the usage

Suitable interval for energy consumption data

- The conceptual design phase - Annual and monthly
- Detailed design phase hourly and daily
 - Data file formats for building energy consumption
- Text file

(CSV)

- MS Excel Spreadsheet
- energy consumption based

- Comma Separated Values

BIPV impact on building factors

Structural loads considered for BIPV designs

dead load, wind load, snow load, live load and seismic load, live load, rain load

- Calculate manually
- Use software for structural load calculation (e.g. proprietary software SnaceGass. RISA)

Methods/software for daylight impact

- Calculate manually
- Use building simulation software (e.g. IES VE Radiance, DiVA, Grasshopper)

Methods for thermal impact of BIPV designs

- Calculate manually
- Use building simulation software (e.g. IES VE, EnergyPlus, DesignBuilder)

Software for fire related impact

- Fire Dynamics Simulator (FDS)
- Thermal Radiation Analysis (TRA)
- Proprietary software

Methods/software for heat island impact

Lifecycle income of BIPV

Saving from energy self-

Income from feed in tariffs

Savings from reducing building

consumption

thermal loads

Salvage value

- Rhino and Grasshopper
- EnergyPlus
- Envi-met

Step 4

Financial and design outcome

Stakeholders: Developers, ESD consultants, PV consultants, Academics and Property managers

Assessing	economic	and	environmental	feasibility

Fconomic

- NPV
- ROI
- PB IRR
- DPB LCOE

Emissions avoided

Embodied emissions

- Capital cost of BIPV Module cost Mounting structure cost
- Installation cost
- Cost of electrical devices and
- installation
- Contingency

- Material cost offset

Lifecycle cost of BIPV

Insurance Depreciation

O&M costs of BIPV

Repair of BOS

Repair of BIPV modules

Repair mounting system

Replacement of BOS

Replacement of BIPV modules

Replacement of the mounting system

Cleaning

Environmental

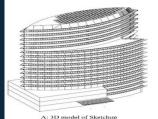
Decision making

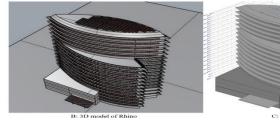
Optioneering /decision making methods

- Multiple solution comparisons using parametric workflows
- Multiple solution comparisons using traditional workflows
- Multiple solution comparisons using integrated optimization

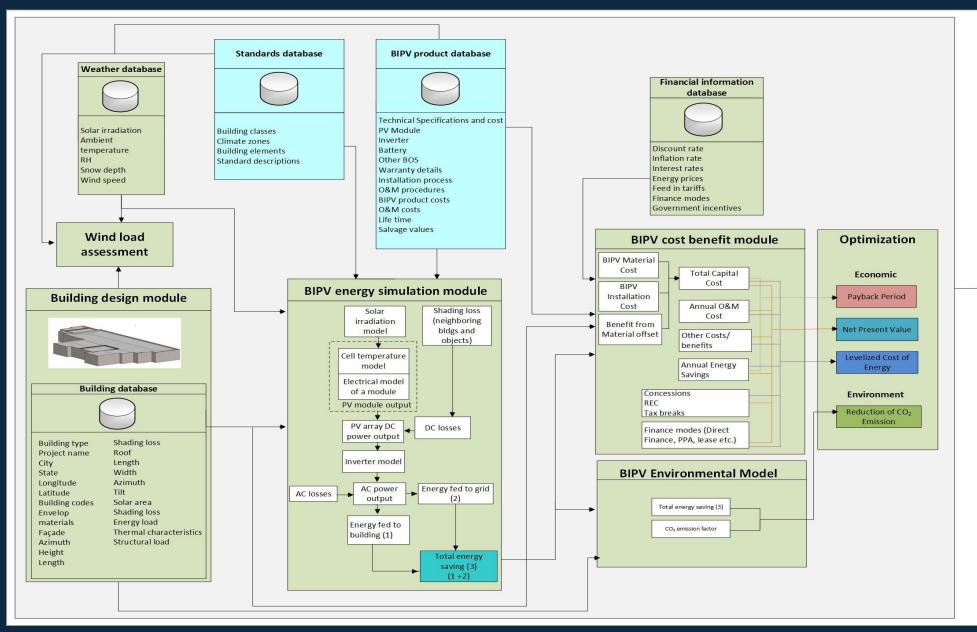
Factors for optimum design of BIPV

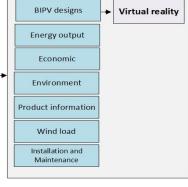
- Cost
- Energy generation
- Reduction of CO₂ emissions
- Thermal impact Aesthetics
- Constructability
- Maintenance requirements
- Building value
- Structural, fire, electrical and thermal safety
- Lighting





Wijeratne, W.P.U., Yang, R.J., et. al., 2019. Design and development of distributed solar PV systems: Do the current tools work?. *Sustainable cities and society*, *45*, pp.553-578.


Design tool comparison



/								
Steps	Skelion	SAM	PVsyst	BIMsolar	Ladybug Tools	PV*SOL	Solarius PV	INSIGHT
Building geometry modelling	Create 3D Model	Create simplified 3D Model	Import 3D Model in COLLADA format	Import 3D Model in Skp format	Create 3D Model	Import 3D Model in COLLADA format	Import 3D Model in IFC format	Create 3D Model
Weather data inputs	Input from Meteonorm 8.1	Built-in Meteonorm 8.1	Built-in Meteonorm 8.1	Input from Meteonorm 8.1	Input from Meteonorm 8.1	Built-in Meteonorm 8.1	Built-in Meteonorm 7.1	Built-in Autodesk Climate Server
PV module and inverter data inputs	·	Manual input detailed specifications	Input detailed specifications via PAN/OND files	Manual input detailed specifications	No input	Input detailed specifications via PAN files and inverter template	Manual input detailed specifications	No input
System layout and array configuration	Reposition but not define array configuration	Reposition and reconfigure façade system array	Reposition and reconfigure façade system array	Reposition and configure case system array	No array configuration defined	Reposition and reconfigure façade system array	Reposition and configure case system array	No array configuration defined
POA irradiance	Perez model	Perez model	Perez model	Ray tracing	Ray tracing	Hay & Davies model	Perez model	Ray tracing
Shading evaluation	Shading factor analysis based on building geometry	Shading calculator based on simplified geometry	Shading factor analysis based on building geometry	Ray tracing	Ray tracing	Near shade calculation based on building geometry	Manual input shading factor	Ray tracing
PV energy conversion simulation	Built-in empirical model	Built-in equivalent circuit model	Built-in equivalent circuit model	Built-in equivalent circuit model	Calculation based on formula	Built-in equivalent circuit model	Built-in empirical model	Calculation based on formula
PV system losses	Manual input based	Simulation	Simulation	Simulation	Manual input based	Simulation	Manual input based	Manual input based

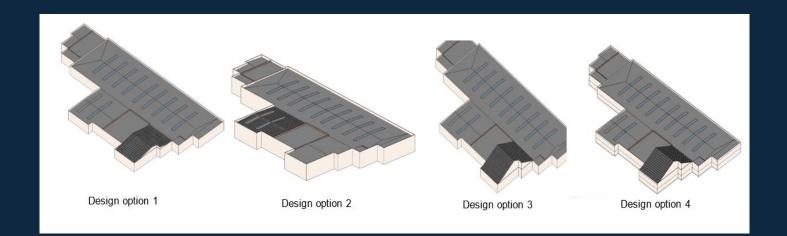
Outcome

BIPV Enabler

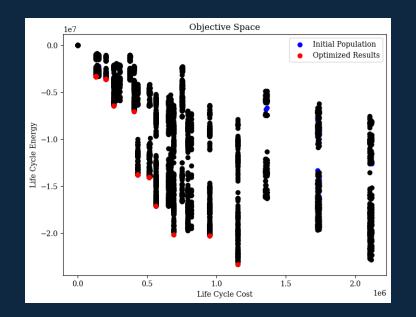
Building Weather & **Building environment** BIPV application Information Location data Information type Energy market PV product info **Building material** User preferences and Policy data **Objective Functions** BIPV Energy Life cycle Cost Generation Constraints **Design Variables** (Objective WWR Surface Tilt Functions) D/L ratio Payback period < PV Placement PV Module lifespan Surface Tilt Optimization Framework NPV > 0(0.3, 0.4, 0.5, Roof 30-350 Cladding Curtain wall Façade Massive feçade 75° - 90° Rainscreen balcony/ parapet D/L Ratio walls, (10, 15, 20, windows, 25, 3 } shading devices (horizontal, vertical) 75° - 90° Shading device (horizontal. Placement for each PV Module surface PV1, PV2, PV3. Constraints (Design Variable) Optimization Algorithm - NSGA2 BIPV alternative designs with optimal values for design variables

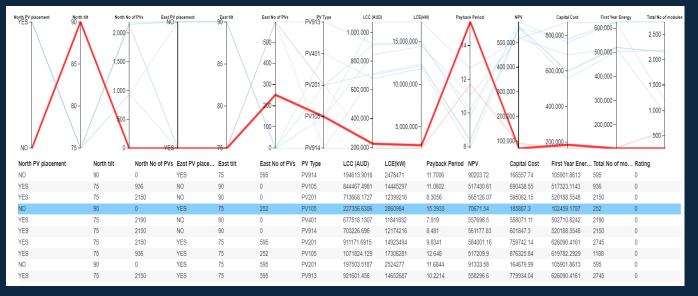
BIPV Design Optimisation

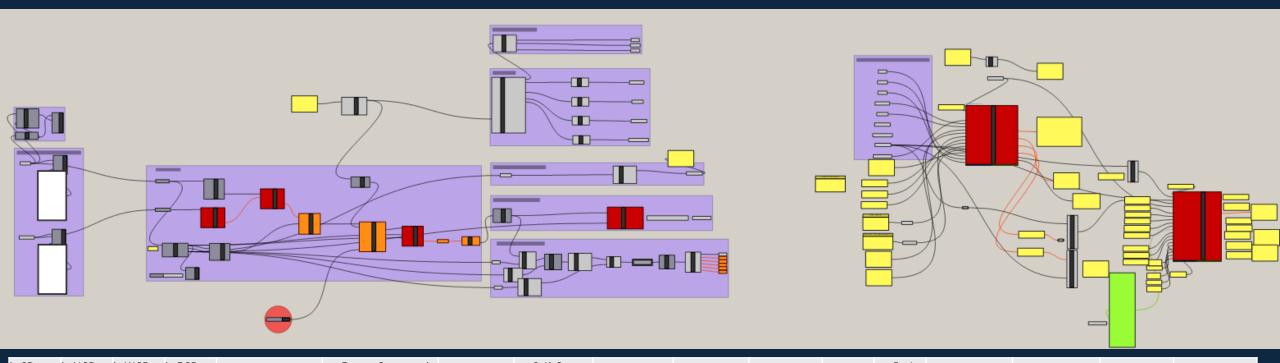
Choose Optimisation Preferences Performance Criteria Maximize Life Cycle Enegy (LCE) Minimize Life Cycle Cost (LCC) Decision Variables (to be optimized) Rainscreen or Cladding BIPV Product Add all as per BIPV product requirements MS_BIPV_AH310M ASP-IAL-T0-73 ASP-IAL-T0-52 Tilt angle dict_values([75, 80, 85, 90]) Window-to-Wall Ratio (WWR) Distance-to-Length (D/L) Ratio Constraints Payback Period PV Life Span Net Present Value (NPV) > 0 Optimization algorithm configurations Initial Population Number of generations Run Optimization	Optimise BIPV Placement		?	×
Maximize Life Cycle Enegy (LCE) Minimize Life Cycle Cost (LCC) Pecision Variables (to be optimized) Rainscreen or Cladding BIPV Product	Choose Optimisation Preferen	nces		
Minimize Life Cycle Cost (LCC) Pecision Variables (to be optimized) Rainscreen or Cladding BIPV Product	Performance Criteria			
Rainscreen or Cladding BIPV Product	Maximize Life Cycle Enegy (LC	Œ)		
Rainscreen or Cladding BIPV Product	✓ Minimize Life Cycle Cost (LCC))		
Rainscreen or Cladding BIPV Product				
MS_BIPV_AH310M ASP-IAL-T0-73 ASP-IAL-T0-52 ✓ Tilt angle dict_values([75, 80, 85, 90]) Window-to-Wall Ratio (WWR) Distance-to-Length (D/L) Ratio Constraints ✓ Payback Period < PV Life Span ✓ Net Present Value (NPV) > 0 Optimization algorithm configurations Initial Population 2 Number of generations	Decision Variables (to be opti	imized)		
MS_BIPV_AH310M ASP-IAL-T0-73 ASP-IAL-T0-52 ✓ Tilt angle dict_values([75, 80, 85, 90]) Window-to-Wall Ratio (WWR) Distance-to-Length (D/L) Ratio Constraints ✓ Payback Period < PV Life Span ✓ ✓ Net Present Value (NPV) > 0 Optimization algorithm configurations Initial Population 2 Number of generations	Rainscreen or Cladding			
MS_BIPV_AH310M ASP-IAL-T0-73 ASP-IAL-T0-52 ✓ Tilt angle dict_values([75, 80, 85, 90]) Window-to-Wall Ratio (WWR) Distance-to-Length (D/L) Ratio Constraints ✓ Payback Period < PV Life Span ✓ ✓ Net Present Value (NPV) > 0 Optimization algorithm configurations Initial Population 2 Number of generations	BIPV Product Add all a	s per BIPV product require	ments	
ASP-IAL-T0-73 ASP-IAL-T0-52 Tilt angle dict_values([75, 80, 85, 90]) Window-to-Wall Ratio (WWR) Distance-to-Length (D/L) Ratio Constraints Payback Period PV Life Span Net Present Value (NPV) 0 Optimization algorithm configurations Initial Population 2 Number of generations				
ASP-IAL-T0-52 Vilt angle dict_values([75, 80, 85, 90]) Window-to-Wall Ratio (WWR) Distance-to-Length (D/L) Ratio Constraints Viet Payback Period PV Life Span Viet Present Value (NPV) > 0 Optimization algorithm configurations Initial Population 2 Number of generations 2	The sale - and the con-		-	
✓ Tilt angle dict_values([75, 80, 85, 90]) Window-to-Wall Ratio (WWR) Distance-to-Length (D/L) Ratio Constraints ✓ Payback Period < PV Life Span ✓ ✓ Net Present Value (NPV) > 0 Optimization algorithm configurations Initial Population 2 Number of generations 2	10.78 (a. 10.08) a 1.70 (a. 10.70)			
Window-to-Wall Ratio (WWR) □ Distance-to-Length (D/L) Ratio Constraints ✓ Payback Period < PV Life Span ✓ ✓ Net Present Value (NPV) > 0 Optimization algorithm configurations Initial Population 2 Number of generations 2	ASP-IAL-T0-52			
Distance-to-Length (D/L) Ratio Constraints ✓ Payback Period ✓ PV Life Span ✓ Net Present Value (NPV) > 0 Optimization algorithm configurations Initial Population 2 Number of generations 2	✓ Tilt angle dict_	_values([75, 80, 85, 90])		
Constraints Payback Period Net Present Value (NPV) > 0 Optimization algorithm configurations Initial Population 2 Number of generations 2	Window-to-Wall Ratio (WWR)	y 11.5. 11.5. 11.5. 11.5. 11.5. 11.5. 11.5. 11.5. 11.5. 11.5. 11.5. 11.5. 11.5. 11.5. 11.5. 11.5. 11.5. 11.5.		
Constraints Payback Period Net Present Value (NPV) > 0 Optimization algorithm configurations Initial Population 2 Number of generations 2	Distance-to-Length (D/L) Rati	io.		
✓ Net Present Value (NPV) > 0 Optimization algorithm configurations Initial Population 2 Number of generations 2				
✓ Net Present Value (NPV) > 0 Optimization algorithm configurations Initial Population 2 Number of generations 2	Dayback Davied			
Optimization algorithm configurations Initial Population 2 Number of generations 2				
Initial Population 2				
Number of generations 2				
	*			
Run Optimization	riamber of generations			
		Run Optimization		


Samarasinghalage, T. I., Yang, R. J., et al. (2022). A multi-objective optimization framework for building-integrated PV envelope design balancing energy and cost. *Journal of Cleaner Production*, 342, 130930.

Yang, R. J. et al. (2023). Digitalizing building integrated photovoltaic (BIPV) conceptual design: A framework and an example platform. Building and Environment, 243, 110675.

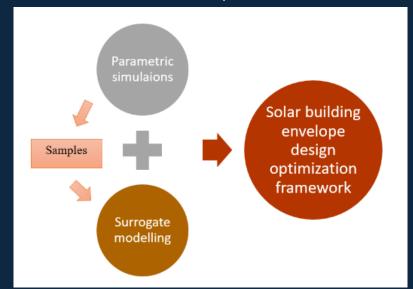

Public

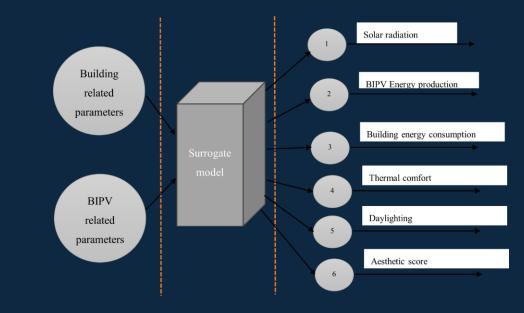

BIPV Design Optimisation

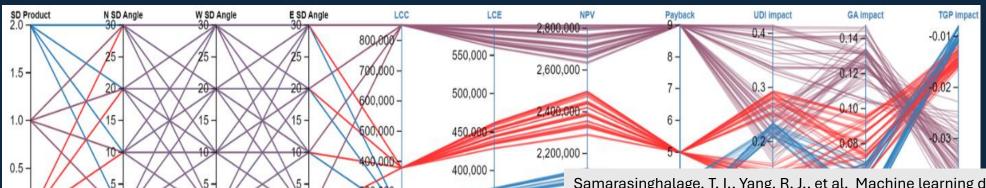

Wijeratne, W.P.U., Yang, R.J. et al. ., 2022. Multi-objective optimisation for building integrated photovoltaics (BIPV) roof projects in early design phase. *Applied Energy*, 309, p.118476.

BIPV parametric modelling and simulations

- ☐ BIPV system modelling in Rhino parametric environment
- ☐ BIPV energy performance based on sandia array performance model
- ☐ LCE, LCE, NPV, Payback calculation using scripts




in:SD	in:N SD	in:WSD	in:E SD		out:Energy_Consumptio		out:Self_Consu					out:Payba				
Product	Angle	Angle	Angle	out:PV Surface area	n	out:PV_Yeild	mption	out:Capital_Cost	out:LCC	out:LCE	out:NPV	ck	out:LCOE	out:UDI impact	out:GA impact	out:TGP impact
1		0	0 (587.519959	1.31E+06	26018.44063	26018.44063	528483.016	851544.6448	586870.6825	2800363	9	1.450991965	0.186322	0.11973	-0.022776
2	2 (0	0 (168.126132	1.32E+06	16459.35886	16459.35886	136991.6943	219602.8765	371256.4987	2091161	3	0.591512545	0.210333	0.038921	-0.007802
C) 10	0	0 (296.639647	1.32E+06	20338.13391	20338.13391	236811.8798	379188.9533	458745.9603	2475806	5	0.826577204	0.253553	0.079993	-0.01255
1	10	0 (0 (587.519778	1.31E+06	26011.71237	26011.71237	528482.8531	851544.3824	586718.9203	2799431	9	1.451366835	0.325917	0.103507	-0.024702
2	2 10	0 (0 (168.12615	1.32E+06	16500.43491	16500.43491	136991.7088	219602.8997	372183.008	2096945	3	0.590040101	0.209819	0.059875	9 -0.008042
C) 20	0	0 (296.639585	1.32E+06	20337.50928	20337.50928	236811.8303	379188.874	458731.8711	2475734	5	0.826602418	0.114875	0.080434	-0.013155


Machine learning based BIPV envelope design optimization

- ☐ Many objective optimization with machine learning based surrogate modelling
- ☐ More efficient and reliable optimization framework

Samarasinghalage, T. I., Yang, R. J., et al. Machine learning driven building integrated photovoltaic (BIPV) envelope design optimization, Energy and Buildings, Volume 324, 2024,114882,

Samarasinghalage, T. I., Yang, R. J., et al. Machine learning driven building integrated photovoltaic (BIPV) envelope design optimization, Energy and Buildings, Volume 324, 2024,114882,

What is the Energy and Economic Viability?

Cities Overview

Acknowledgement: Clarissa Zomer CEO Arquitetando Energia Solar

Energy Assessment: BRAZIL

City	LAT	LON	North	East	South	West
Curitiba	25°25′47″S	49°16′16″W	24.22	3.58	-	-
Rio de Janeiro	22°54′40″S	43°12′20″W	21.86	21.25	-	-
Cuiaba	15°35′45″S	56°05′49″W	19.43	24.81	-	-
Teresina	5°05′42″S	2°48′15″W	9.13	21.44	-	-

Optimization results for tilt angle that achieves highest irradiance under different azimuth in Brazil

City	Roof des	ign option	Façade design option		
	Best	Second best	Best	Second best	
Curitiba	Optimal-N	Lat-N	75-N	75-E	
Rio de Janeiro	Optimal-N	Lat-N	75-E	75-N	
Cuiaba	Optimal-E	Lat-E	75-E	90-E	
Teresina	Optimal-E	Lat-E	75-E	90-E	

Best and second-best orientation and tilt configurations for rooftop-(BI)PV and façade-BIPV for Brazil

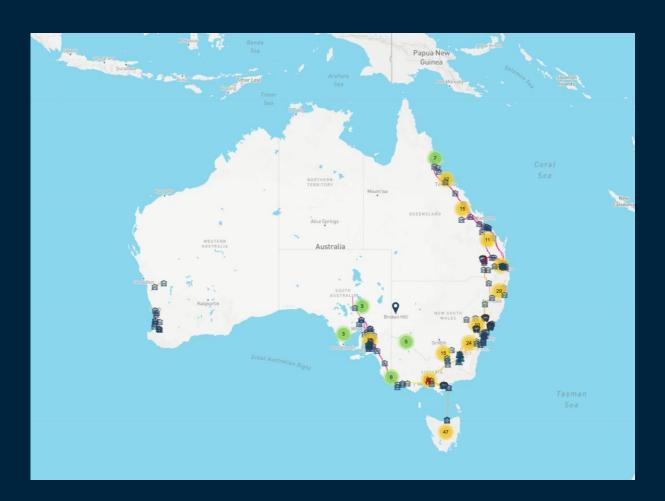
Economic Analysis: Method

- Input: Capital cost, conventional material replacement cost, operation and maintenance cost, inverter replacement cost, degradation rate, salvage value, electricity price, electricity price growth rate, system lifespan, module efficiency (5%-25%)
- BIPV Price tiers: Low (133-600USD/m2), Medium (500-1160USD/m2), High (500-1720USD/m2)
- BIPV Price includes
 - Hardware costs Expenditure for physical components (modules, inverters, electrical equipment and cabling
 - Soft costs additional installation and development cost due to BIPV
- Fffective NPV

$$Effective NPV = \frac{EBS + GS - [CC - MRV + LMC + IRC - RE - SV]}{SC}$$

Effective LCOE

$$Effective\ LCOE = \frac{CC - MRV + LMC + IRC - RE - SV}{Lifecycle\ Energy}$$


R.P.N.P. Weerasinghe, R.J. Yang, R. Wakefield, E. Too, T. Le, R. Corkish, S. Chen, C. Wang, Economic viability of building integrated photovoltaics: A review of forty-five (45) non-domestic buildings in twelve (12) western countries, Renewable and Sustainable Energy Reviews, Volume 137, 2021, 110622,

THE UNIVERSITY OF MELBOURNE

AEMO - Australia's national grid operator

- Australian Energy Market Operator (AEMO)
- ➤ National Electricity Market (NEM), which operates in eastern and south-eastern Australia,
- ➤ Wholesale Electricity Market (WEM), which operates in Western Australia.

Public

How the NEM works (wholesale electricity supply)

- Generators bid into the spot market
- AEMO dispatches lowest-cost generation to meet demand, subject to constraints
- Market price set every 5 minutes → averaged into 30-min settlement price (Spot price)
- Transmission network delivers power to consumers via DNSPs/retailers
- Key objective: secure, reliable, least-cost supply
- Risks: Arbitrage can cause significant price spike, hence the introduction of Administered Price Cap (APC) after June 2022 when the spot price routinely hit over \$15k per MWh
- The current permanent APC is \$600/MWh valid until 2028.

How the NEM works (market mechanism)

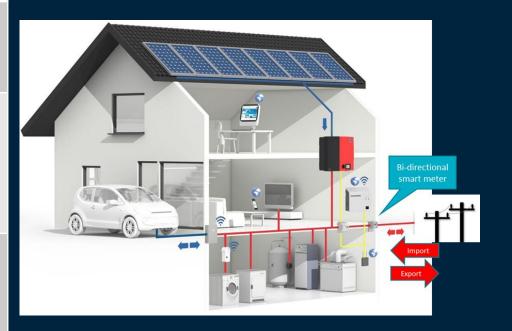
1. Spot Price

- Core price signal, determined by supply–demand balance
- Capped/floored by Market Price Cap (MPC) & Market Floor Price (MFP)

2. Frequency Control Ancillary Services (FCAS)

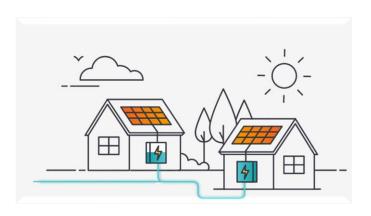
- Maintain system frequency at 50 Hz
- Types:
 - Regulation FCAS: continuous fine-tuning
 - Contingency FCAS:
 - rapid response to sudden events (e.g. generator trip)
 - Similar bidding system as of wholesale energy
 - 8 channels of raise/lower frequency depending on response time

3. Other Mechanisms


- Reliability & Emergency Reserve Trader (RERT)
- Wholesale Demand Response

Price	QLD	NSW	SA	VIC	TAS
Energy	\$222.22	\$79.22	\$91.15	\$94.41	\$65.34
Raise Reg	\$16.88	\$16.88	\$16.88	\$16.88	\$7.7
Lower Reg	\$8.00	\$8.00	\$8.00	\$8.00	\$5.12
Raise 1 sec	\$0.30	\$0.30	\$0.30	\$0.30	\$0.30
Raise 6 sec	\$0.38	\$0.38	\$0.38	\$0.38	\$0.38
Raise 60 sec	\$0.36	\$0.36	\$0.36	\$0.36	\$0.36
Raise 5 min	\$0.10	\$0.10	\$0.10	\$0.10	\$0.10
Lower 1 sec	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Lower 6 sec	\$0.39	\$0.39	\$0.39	\$0.39	\$0.39
Lower 60 sec	\$0.39	\$0.39	\$0.39	\$0.39	\$0.39
Lower 5 min	\$0.39	\$0.39	\$0.39	\$0.39	\$0.39

How Homes Use Solar PV and Battery – and Impacts on Bills


Setup	Electricity Flow	Impact on Bills
Solar PV Only	 Solar powers home first Imports from grid when solar is insufficient Exports excess to grid 	- Reduces bills by offsetting grid usage
Solar + Battery (Direct Use)	 Excess solar stored in battery Battery discharges when solar is unavailable Imports from grid if solar + battery are insufficient 	 Further bill reduction by using stored solar Limited to fixed tariffs in most cases
Solar + Battery (VPP Managed)	 Battery controlled by third-party (e.g. VPP) Charges during low-price periods (even from grid) Discharges during peak prices / FCAS events 	 Optimised costs via market price timing Additional FCAS revenue (if ≥1 MW aggregated capacity)

Virtual Power Plant (VPP) pilot program

The VPP pilot program has helped Victorian households create and share power, save money on energy bills and reduce reliance on the grid.

Background

• VPP Pilot Program – Solar Victoria:

Aimed to explore the benefits of battery orchestration and grid services.

- Conducted under the **Solar Homes Battery Rebate Program** by Solar Victoria (a division within DEECA).
- From 2019–2023, over 15,000 Victorian households installed solar batteries with support from the program.
- The VPP Pilot was a targeted initiative to evaluate technical, economic, and operational aspects of VPP participation.

Technical assessment

- Three VPP provider models were evaluated:
 - Reposit VPP: Full control for arbitrage and FCAS.
 - Tesla VPP: Partial control focused on FCAS with limited battery cycling.
 - Mondo VPP: Partial control with real-time energy arbitrage integration.
- Assessment included:
 - Analysis of battery utilisation, customer load profiles, and market participation strategies.
 - Evaluation of economic outcomes for both customers and VPP operators.
 - Investigation of grid support contributions, especially through FCAS and spot price signal responsiveness.
 - Review of customer-level impacts from FCAS participation.

THE UNIVERSITY OF MELBOURNE

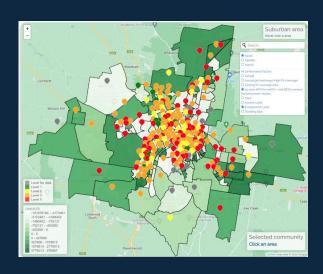
VPP value creation

VPP operation can create and capture value

VPPs generated \$810–\$1,160/year per customer, depending on market participation (arbitrage, FCAS, or both) and contract structure.

VPP participation can lower costs for customers

VPP participation lowers overall consumer costs. This value can be passed to customers in multiple ways, including an upfront capital discount, reduced electricity bills, or an annual fixed rebate.


Battery costs are pivotal to VPP viability

Falling battery prices are driving greater home storage uptake, making it easier for VPP providers to meet FCAS aggregation thresholds and spread overhead costs.

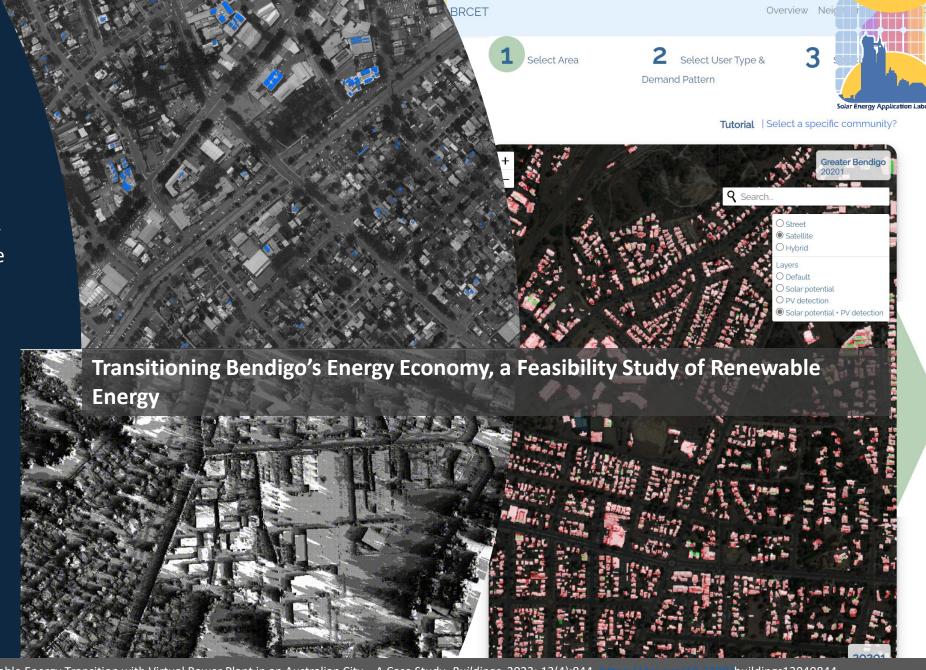
Community energy infrastructure VPP

The 'Transitioning Bendigo's Energy Economy' Project implemented the city level VPPs to integrate communityowned PV and battery resources in the City of Greater Bendigo.

Benefits:

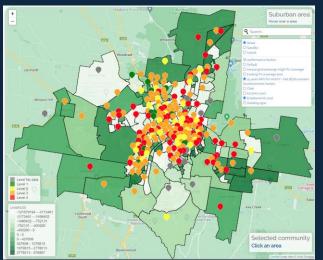
- Great adaptability and robustness among diverse community profiles;
- Value creations for distributed PV and BESS through providing demand response and load management services at a large scale;
- Supporting future growth of renewable capacity on city level;
- Reinforcement learning algorithm to support tailored energy management solutions for individual communities

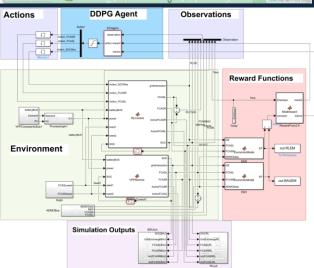
Challenges:


- Reliance on battery capacity
- Capital investment and infrastructure upgrade may be challenging for certain communities

Case study city

- Demographic and Geographic conditions
 - 235 communities Statistical Area level 1 (SA1)
 - Total population of 110,477 at 2020
 - Total number of building footprints: 73,607
- Supply and demand conditions
 - Total annual electricity demand: around 550 GWh
 - Existing PV installation: ~50MW total capacity covering 0.3 square kilometres (km2) rooftop
- Renewable energy and sustainability target
 - 100% energy demand by renewables by 2036 and carbon neutral by 2050


Community focused renewable transition


- Support the renewable energy transition with local renewable resources
- Advocate for investment in Greater Bendigo region
- Explore the synergy of solar and community battery

Solar Energy Application Laboratory

Community focused renewable transition – Community Virtual Power Plant

Social-economic-technical feasibility analysis for community based Virtual Power Plants

Region (SA2 Name)	SA1 Code	Туре	IRSAD Score	PV capacity (MW)	Battery capacity (MWH)	25 years NPV(Millions AUD)
East Bendigo - Kennington	2102036	I	986	7.34	10.27	20.66
Kangaroo Flat - Golden Square	2102240	1	904	7.24	10.14	19.13
Kangaroo Flat - Golden Square	2102217	С	838	5.77	8.08	17.29
East Bendigo - Kennington	2102006	1	1001	9.82	13.75	14.09
Bendigo	2101803	I	938	5.94	8.32	12.43
White Hills - Ascot	2102503	С	995	5.77	8.07	11.90
Kangaroo Flat - Golden Square	2102234	1	912	7.78	10.89	11.21
Bendigo	2101835	С	959	10.95	15.33	10.97
Kangaroo Flat - Golden Square	2102245	R	1032	5.33	7.47	9.56
White Hills - Ascot	2102513	R	998	5.38	7.53	9.56
Region (SA1 Name)	SA1 Code	Туре	IRSAD Score	PV capacity (MW)	Battery capacity	25 years NPV (Millions AUD)
				()	(MWH)	nos,
Maiden Gully	2102309	A	1030	2.48		-8.09
Maiden Gully Kangaroo Flat - Golden Square	2102309 2102202	A C	1030 888		(MWH)	
				2.48	(MWH) 3.48	-8.09
Kangaroo Flat - Golden Square	2102202	С	888	2.48 4.64	(MWH) 3.48 6.50	-8.09 -1.11
Kangaroo Flat - Golden Square Bendigo	2102202 2101834	C R	888 1026	2.48 4.64 1.87	(MWH) 3.48 6.50 2.62	-8.09 -1.11 -0.78
Kangaroo Flat - Golden Square Bendigo Bendigo	2102202 2101834 2101807	C R C	888 1026 888	2.48 4.64 1.87 2.83	(MWH) 3.48 6.50 2.62 3.96	-8.09 -1.11 -0.78 -0.75
Kangaroo Flat - Golden Square Bendigo Bendigo Flora Hill - Spring Gully	2102202 2101834 2101807 2102103	C R C C	888 1026 888 920	2.48 4.64 1.87 2.83 1.82	(MWH) 3.48 6.50 2.62 3.96 2.55	-8.09 -1.11 -0.78 -0.75 -0.55
Kangaroo Flat - Golden Square Bendigo Bendigo Flora Hill - Spring Gully White Hills - Ascot East Bendigo - Kennington Bendigo	2102202 2101834 2101807 2102103 2102520	C R C C	888 1026 888 920 913	2.48 4.64 1.87 2.83 1.82 6.57	(MWH) 3.48 6.50 2.62 3.96 2.55 9.20	-8.09 -1.11 -0.78 -0.75 -0.55 -0.37
Kangaroo Flat - Golden Square Bendigo Bendigo Flora Hill - Spring Gully White Hills - Ascot East Bendigo - Kennington	2102202 2101834 2101807 2102103 2102520 2102017	C R C C	888 1026 888 920 913 967	2.48 4.64 1.87 2.83 1.82 6.57 1.55	(MWH) 3.48 6.50 2.62 3.96 2.55 9.20 2.17	-8.09 -1.11 -0.78 -0.75 -0.55 -0.37 -0.06

Liu C, Yang R, Wang K, Zhang J. Community-Focused Renewable Energy Transition with Virtual Power Plant in an Australian City—A Case Study. *Buildings*. 2023; 13(4):844. https://doi.org/10.8890/buildings13040844
Liu, C., Yang, R. J., Yu, X., Sun, C., Rosengarten, G., Liebman, A., Wakefield, R., Wong, P. S. P., & Wang, K. (2023). Supporting virtual power plants decision-making in complex urban environments using reinforcement learning. Sustainable Cities and Society, 99, 104915. https://doi.org/10.1016/j.ses.2023.104915

Energy Flexibility for water corporations

Flexible load:

- Pumps with variable speed drives (VSDs)
- Aeration systems in wastewater treatment

Energy storage:

- Battery Energy Storage Systems (BESS):
- Biogas storage
- Pumped hydropower storage

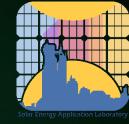
Energy trading:

- Peer-to-peer (P2P) trading
- Virtual Power Plant (VPP) aggregation

Flexible renewable generation:

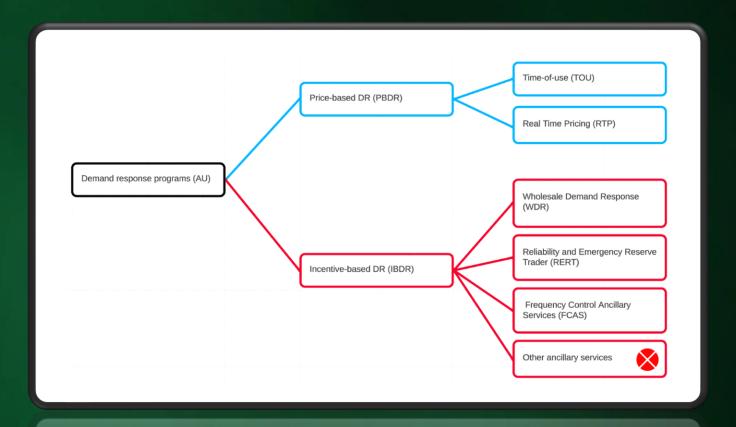
- PV generation (smart inverter)
- Biogas CHP (combined heat and power)
- Hydropower

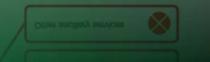
Flexible load



Energy trading

Flexible renewable generation


Demand response


Price based demand response

- Energy users voluntarily adjust their electricity usage in response to time-varying electricity prices, without receiving direct incentives.

Incentive-based demand response

- Participants reduce or shift load during certain events for direct payments or incentives from third parties (e.g., AEMO or aggregators).

Assessment matrix

Demand resposne options	Flexibility and RE options	R0: Flexible load	R1: On-site generation with ESS	R2: Flexible load On-site generation with ESS	R3: Flexible load On-site generation P2P trading with neighbouring DERs
	Retailer contract (TOU)	TOU-R0	TOU-R1	TOU-R2	TOU-R3
Price-based DR					
	Spot market (RTP)	RTP-R0	RTP-R1	RTP-R2	RTP-R3
	NEM-FCAS demand response (FCAS)	FCAS-R0	FCAS-R1	FCAS-R2	FCAS-R3
Incentive-based DR	NEM-Wholesale demand response (NEM-W)	NEM-W-R0	NEM-W-R1	NEM-W-R2	NEM-W-R3
	Emergency demand response (RERT)	RERT-R0	RERT-R1	RERT-R2	RERT-R3
			,		

Public

Case study - Epsom Wastewater Reclamation Plant

Consumption:

• ~1.2 MWh per hour

Flexible load:

700 KVA (switching off the aerators)

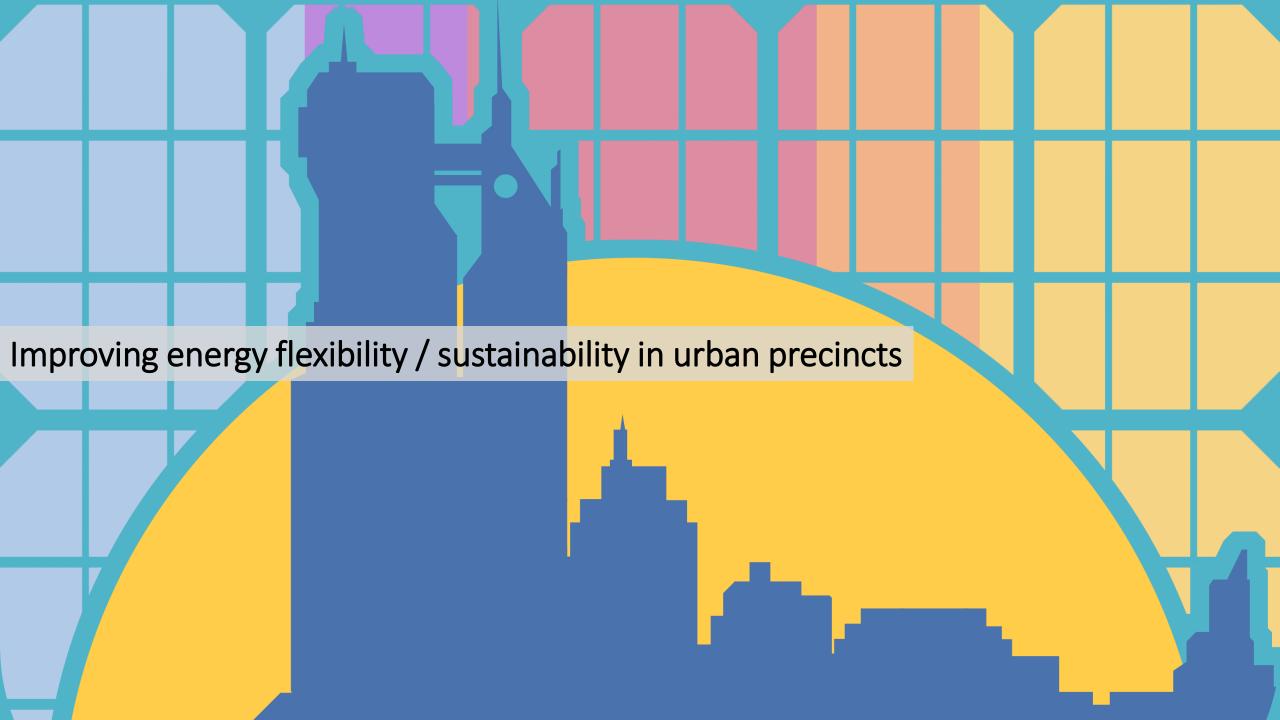
Proposed Renewable Energy assets:

• PV: 2 MW

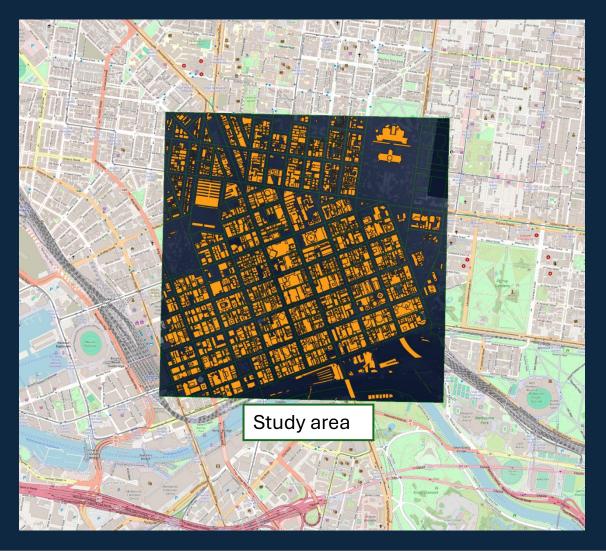
• BESS: 1.5 MWh

Assessment - Cost Reduction Matrix

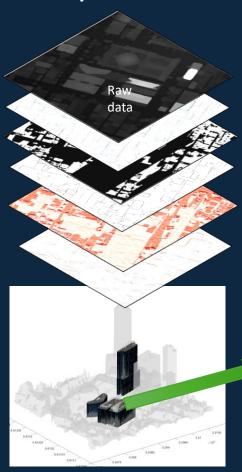
Epsom WWTP	Flex load shifting	PV + BESS	Flex + PV + BESS	Flex + PV + BESS + Energy trading
Cost Change under Retailer tariff	-4.0%	-30.0%	-35.0%	-39.0%
Cost Change under Spot market	13.0%	-31.0%	-36.0%	-41.0%
Cost Change under Spot + FCAS	8.2%	-43.3%	-48.3%	-53.3%
Cost Change under Spot + WDR	7.8%	-43.7%	-53.1%	-59.7%
Cost Change under Spot + RERT	9.6%	-34.4%	-39.4%	-44.4%


^{*} With 2MW PV and 1.5MWh BESS installation

Lifecycle cost in scenario of PV+BESS under Spot + WDR


PV	2 MW	2.5 MW	3 MW
BESS	BESS 1.5 MWh 1.875 MV		2.25 MWh
Cost Reduction (%)	53%	77%	99%
Payback Year	15	12	11

Research Design and Methodologies – Case study in a typical Australian city – City of Melbourne


- The **City of Melbourne** is selected, which is located in Victoria, Australia, which is the capital city of Victoria and the second largest city in Australia.
- The City of Melbourne has made great effort to reduce the greenhouse gas emission, making it a world leading city to act on the climate change (Melbourne, 2021). The City of Melbourne plans to realise the Net Zero Emissions by 2040 for the entire municipality (Melbourne, 2021).
- The study area covers the majority of Melbourne CBD, with a total area of 2000m*2000m.

Machine learning-based digitalisation and evaluation of urban solar energy

Simulation process

Simulation results

ML-based process

Inputs

- .. Meshblock level urban morphology factors from ABS
- 2. Raster layer parameters
 - ■Wall height
 - Wall azimuth

ML Prediction Models

Outputs

- Annual average shading height on building façade
- 2. Annual solar potential on building façade
- 3. Annual electricity output from solar PV

What are the benefits of the ML-based process?

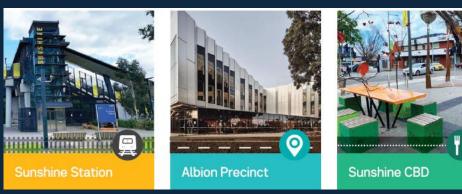
- A simplified workflow for evaluating solar energy and shading impacts in the urban environment
- Accelerate simulation process and reduce computation resources
 - > Simulation process for Melbourne CBD: 4 8 hours (1m resolution)
 - > ML-based process for Melbourne CBD: 15 seconds (1m resolution)
- Easier data collection/management process
 - > Simulation process: Geospatial layers (Raster and vector)
 - ➤ ML-based process: ABS urban morphology data and user-defined inputs (Numeric)
- Does not rely on highly accurate LiDAR data or existing models. Suitable for new-development and early-stage planning.
- Support the decision-making of renewable transition and development by increasing visibility of urban renewable energy potential and challenges.

Sunshine Precinct Development

The government's vision for Sunshine Precinct is to emerge as the center of Melbourne's booming west providing key opportunities to boost employment, investment and livability through planning.

The Victorian government is delivering a record investment of AUD 20 Billion to grow and develop Sunshine precinct as the center of Melbourne's west.

Sustainability is the core approach of this urban development.


The purpose of our research project is to help implement the Sunshine Precinct Opportunity Statement by providing a comprehensive analysis of sustainable urban design strategies including urban heat, water supply, embodied energy and renewable energy transition opportunities.

In this project, data collected will be integrated into a model to analyze the impacts of hypothetical scenarios for the Sunshine Precinct.

Department of Transport and Planning

- 1. State Government of Victoria (2024). Sunshine Precinct. Available at: https://engage.vic.gov.au/sunshine [Accessed on 27 August 2024].
- 2. Race for 2030 (2024). *Digital twin enabled sustainable sunshine precinct development*. Available at: https://racefor2030.com.au/project/digital-twin-enabled-sustainable-sunshine-precinct-development/ [Accessed on 27 August 2024].

Digital Twin Enabled Sustainable Sunshine Precinct Development

Support the creation of a resilient and sustainable urban precinct, capable of adapting to future environmental and infrastructural challenges

Urban heat

Water balance and efficiency

Sustainable energy infrastructure

Embodied carbon

Stakeholders and options for sustainable precinct energy infrastructure

Sustainable High-Density Urban Precinct Energy Options

Infrastructure upgrade

Distributed generators, BESS, and EV

Energy flexibility and smart grid

Demand side management

Energy efficiency urban and building design

Key Stakeholders

- NEM
- DNSP

- Community
- DEECA/Solar Victoria
- · City Council
- Sustainability Victoria
- DTP
- Retailer

- Community
- DEECA/Solar Victoria
- DTP
- · Sustainability Victoria
- · City Council
- NEM
- DNSP
- Retailer

- Community
- · City Council
- Retailer
- DEECA/Solar Victoria
- Community
- City Council
- DEECA/Solar Victoria
- Sustainability Victoria
- DTP

Solar World Congress 2025 04 - 07 November in Fortaleza, Brazil

Prof. Rebecca Yang

Rebeccayang@unimelb.edu.au

